Land Cover Classification of Remotely Sensed Satellite Data using Bayesian and Hybrid classifier

نویسندگان

  • Ratika Pradhan
  • K. Ghose
  • A. Jeyaram
چکیده

In this paper an attempt has been made to develop classification algorithm for remotely sensed satellite data using Bayesian and hybrid classification approach. Bayesian classification is a probabilistic technique which is capable of classifying every pattern until no pattern remains unclassified. Hybrid classification involves developing training patterns using unsupervised classification followed by classifying the pixels using supervised classification. It is observed that the overall accuracy was found to be 90.53% using the Bayesian classifier and 91.57% using the Hybrid classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture Based Land Cover Classification Algorithm Using Gabor Wavelet and Anfis Classifier

Texture features play a predominant role in land cover classification of remotely sensed images. In this study, for extracting texture features from data intensive remotely sensed image, Gabor wavelet has been used. Gabor wavelet transform filters frequency components of an image through decomposition and produces useful features. For classification of fuzzy land cover patterns in the remotely ...

متن کامل

Spatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization

The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...

متن کامل

Optimal Bayesian Classifier for Land Cover Classification Using Landsat TM Data

An optimal Bayesian classifier using mixture distribution class models with joint learning of loss and prior probability functions is proposed for automatic land cover classification. The probability distribution for each land cover class is more realistically modeled as a population of Gaussian mixture densities. A novel two-stage learning algorithm is proposed to learn the Gaussian mixture mo...

متن کامل

Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...

متن کامل

Land Cover Classification Using IRS-1D Data and a Decision Tree Classifier

Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010